Uniform Lyndon Interpolation for N*A,, ,,

Yuta Sato <231x032x@gsuite.kobe-u.ac.jp>

18th Asian Logic Conference in Kyoto Sangyo Univ.
September 12th, 2025

Kobe University, Japan

1/24


mailto:231x032x@gsuite.kobe-u.ac.jp

A PDF is available!

The slides are available online at:

cannorin.net/math/alc2025.pdf

[=], 18 (o]
L

(will be displayed again at the end)

2/24


https://www.cannorin.net/math/alc2025.pdf

Bonus: the Kripke game!

Daily Challenge: 00:33:18 until the next game.

VIVIVIVIV I made a Wordle-like game
where you guess the shape of a
Kripke frame, just with formulas.
Give it a try!
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| proved that the logic N*A,, ,, enjoys

Uniform Lyndon interpolation property,

with a new method called propositionalization.

This talk is based on:
Yuta Sato. Uniform Lyndon interpolation for the pure logic of
necessitation with a modal reduction principle. Journal of Logic and

Computation, to appear. arXiv:2503.10176.
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The Logic N*A,, ,




What iS N+Am,_‘n,?

¥
N = Cl+ —=—
+D<p
+ _'I:kp n m
NT"A,, = N + + " — O%p
’ =0

Cl: the classical propositional logic

N: the pure logic of necessitation (Fitting et al. 1992)

e also obtained from the logic K by removing its K axiom

-Op . . o
SR required by the semantics

O"p — O™p: a generalized reflexivity/transitivity axiom

*the completeness does not hold without it. no deep dive today
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N*A,,, vs. normal modal logics

Fact (Kurahashi and S.)
N*tApn C K+O — Omp

Proof.
The rule

=

EDD“; is admissible in K. The rest is trivial. O
Fact (Kurahashi and S.)

N*A,, . has the finite frame property (ffp) for every m,n € N

It is still unknown to this day whether K + [ — 0™ has ffp

= The lack of the K axiom is indeed a massive difference
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The sequent calculus for NTA,, ,

A sequent calculus Gn+4,, ,, is obtained from LK by adding:

= @
T
Uy =
m (rOSbOX, when m =0 and n Z 2)

O™, %, I' = A
%, I' = A

I = A0O%p, 0%
I = A0Omp

(accL, when n > m)

(accR, when m > n)

Proposition (S.)
® GN+a,,, proves T'= A iff NT A, ,, proves AT — \/ A

e Gn+a,,, admits cut elimination
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Uniform Lyndon Interpolation
Property




CIP and LIP (1/2)

Let V() and V™ () denote the set of variables that occur in ¢
positively and negatively, resp. Let also V(@) = V1 (¢) UV~ (p).

Example
VF@ = x) =V () UVT(x), V7 (¥ = x) =V () UV~ (x)

L is said to enjoy Craig interpolation property (CIP) if for every
p,p s.t. L@ — ), there is y s.t.:

L V(x) € V(e) NV(¥);
2. LFyp —xand LF xy — 9.

Such x is called an interpolant of ¢ — ¢ in L.
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CIP and LIP (2/2)

Let V() and V™ () denote the set of variables that occur in ¢
positively and negatively, resp. Let also V(@) = V1 (¢) UV~ (p).

Example
VF@ = x) =V () UVT(x), V7 (¥ = x) =V () UV~ (x)

L is said to enjoy Lyndon interpolation property (LIP) if for every
p,p s.t. L@ — ), thereis y s.t.:

L Ve(x) S V()N V() (o € {+,-});
2. LFyp —xand LF xy — 9.

Such x is called an interpolant of ¢ — ¢ in L.
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UIP and ULIP (1/2)

L is said to enjoy Uniform interpolation property (UIP) if for any ¢

and any finite set of variables P, there is x s.t.

1. V(x) € V(p) \ P;
2. LFyp—x;
3. Lk x — ¢ forany ¢ st. LE @ — ¢ and V(¢) N P = 0.

Such y is called a post-interpolant of (¢, P) in L.
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UIP and ULIP (2/2)

L is said to enjoy Uniform Lyndon interpolation property (ULIP) if

for any ¢ and any finite sets of variables P™, P~ there is x s.t.
L Vo(x) S V(@) \ P* (e € {+ —});
2. LF o —x;
3. LEx— ¢ forany ¥ st. L@ — ¢ and V() N P* =10
(e € {+ -1}

Such x is called a post-interpolant of (¢, P™, P~) in L.
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Several facts on the interpolation properties (1/2)

Fact

e If L has UIP, then L has CIP
e If L has LIP, then L has CIP
e If L has ULIP, then L has both UIP and LIP (Kurahashi 2020)

Fact (Kurahashi 2020)
e The classical propositional logic Cl1 enjoys ULIP
e The modal logic K enjoys ULIP
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Several facts on the interpolation properties (2/2)

The situation is complicated for the extensions of K:
Fact
e KT =K + Uy — ¢ enjoys ULIP (Kurahashi 2020)

e Form >0, K+ Oy — O™ enjoys CIP (Gabbay 1972) and
LIP (Kuznets 2016)

e K4 =K + Uy — O0p lacks UIP (Bilkova 2007)
o K + 0y — O lacks even CIP (Marx 1995)

K+ O%p — O™, in general, may or may not enjoy them

= What happens if we weaken it to NTA,, ,,?
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The Propositionalization Method




Propositionalization, in short

ULIP of a logic is sometimes proven by embedding it to some
weaker logic where ULIP is already known:

Example

Through the boxdot translation, ULIP of K implies ULIP of KT,
and the failure of it in S4 implies that of K4

| gave a sufficient condition on such embeddings:
Theorem (S.)

For any logics L C M, if there is a translation with certain

properties, propositionalization, of M into L, and L has ULIP,
then so does M
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Propositionalization, in detail (1/3)

Given a logic X, let Zx designate the language of X.
Consider logics L and M s.t. £, C %y and L C M.

Now we want to propositionalize any .£),-formula that is not
expressible in %7

Definition

Let L' be the same logic as L, but its propositional variables

extended by adding a fresh one p,, for every p € Z).

Definition
Let 0 : £ — £ be the substitution that replaces every p,,
with ¢, then L'+ p implies M F o(p) for any p € Z.
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Propositionalization, in detail (2/3)

Definition
A pair of translations #,b : £y — £ is called a
propositionalization of M into L if the following are met:

(Embeddable) M F ¢ — 1 implies L' - ¢ — 9f;
(Invertible) M F o(p) — @ and M F ¢ — o(¢P);
(Polarity-preserving) For (e,0) € {(+,—),(—,+)}, b € {#,b}:

e p € V*(oh) implies p € V*(p);
e py € V*(¢?) implies V*(¢) C V*(¢), V°(¢h) € V°(p).
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Propositionalization, in detail (3/3)

Theorem (S.)
If there is a propositionalization (#,b) of M into L, and L has
ULIP, then M does also

Proof (outline).

Take any ¢, P, P~. We extend P*® to Q® by adding every
problematict Py found in ©”. By ULIP of L, we get a
post-interpolant x’ of (¢*,Q*, Q™). Then, embeddability,
invertibility, and polarity-preservingness of f,b assert that

X = o(x’) is indeed a post-interpolant of (o, P, P7)in M. [

tthe actual condition for Py to be problematic is very complicated
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The Main Theorem




The Main Theorem

Theorem (S.)
There is a propositionalization (f,b) of NTA,, ,, into Cl

Proof (outline).

We construct such £,b that a cut-free proof of ' = A in
GN+A,,, can be emulated as a proof of I’ = A% in LK, then
embeddability natually holds. We also ensure invertibility and
polarity-preservingness by adding just the right amount of
information to enable such emulation. [

Corollary
NTA,,, enjoys ULIP!
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Summing it up (1/2)

It is known that K + [0"p — [0 ¢ does not, in general, enjoy all
of CIP, LIP, UIP, and ULIP:

e K4 =K + Up — Oy lacks UIP
o K + [y — Oy lacks even CIP

However, Nt A,, ,, enjoy all of them for every m,n € NI
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Summing it up (1/2)

It is known that K + [0"p — [0 ¢ does not, in general, enjoy all
of CIP, LIP, UIP, and ULIP:

e K4 =K + Up — Oy lacks UIP
o K + [y — Oy lacks even CIP

However, Nt A,, ,, enjoy all of them for every m,n € NI

Open Problem

To what extent the presence of the K axiom is harmful for a logic
in terms of interpolation properties?

e Is there a logic between N4 and K4 that lacks UIP?

e |s there a logic between N + Oy — Oy and K + OCp — Op
that lacks CIP?
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Summing it up (2/2)

We also developed a general method for proving ULIP:

Theorem (S.)
For any logics L. C M, if there is a propositionalization of M into
L, and L has ULIP, then so does M
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Summing it up (2/2)

We also developed a general method for proving ULIP:

Theorem (S.)
For any logics L. C M, if there is a propositionalization of M into
L, and L has ULIP, then so does M

Open Problems

e Can we possibly say that if ULIP holds, then some nontrivial
propositionalization exists? For example, can we construct
propositionalizations of K into N or C17

e Can we characterize a syntactic property on sequent calculi
that corresponds to the existence of a propositionalization?
(e.g. lemhoff 2019, Akbar Tabatabai & Jalali 2025)
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Why the accL and accR rules look like that?

You may be wondering why we did not just use an initial sequent
Omp = O™y to represent the axiom "¢ — O™ .

Suppose m > 0 and n = 0, and consider the sequent calculus obtained
from LK by adding the nec rule and the said initial sequent. This would
permit the following cut, which cannot be eliminated:

Y1 = ©1
Y1 = P1V

VR
(VR) e1Vpr = O™ (p1Ve2)
w1 = O™(p1V 2)

(cut)

The same problem happens for the case when m =0 and n > 0.



How do we get ()° from P°?

Basically, we want to add py to Q° if V(¢) overlap with P®. We need to
be extra careful here; if p € V™ (1) and py, € V™ (¢°), then it must be
that p € VT ().

Definition
Let us say ¢ € Ly is +-safe if Pt N VT () = PNV~ (¢)) =0, and
is —safe if PT NV~ (¢) =P~ NVt (y)=0.

For e € {+,—}, we let:

Q* =P U {p¢ € V(") ‘ 1 is not o—safe}.



Why cut elimination is needed for propositionalization?

First, embeddability of 4,b (if M ¢ — 1, then L' - " — 9*) implies
that L' F ¢* — ot So ¢t is, in general, provably weaker than ¢

Now suppose that I';,I's = Ay, Ay were obtained by the cut rule:

' = Agep o,y = Ay

',y = A, A (cut)

Then by the induction hypothesis, I} = Aﬁ,gpﬁ and ¢°,T% = Ag would
be provable in the sequent calculus for L.

As ©f is weaker than ¢”, there would be no way of applying the cut rule
to these two sequents and thus obtaining I}, T% = Aq, Ag.
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